Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Extensive Structural Renovation of Retrogenes in the Evolution of the Populus Genome

Zhenglin Zhu, Yong Zhang and Manyuan Long
Plant Physiology
Vol. 151, No. 4 (Dec., 2009), pp. 1943-1951
Stable URL: http://www.jstor.org/stable/40537631
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Extensive Structural Renovation of Retrogenes in the Evolution of the Populus Genome
Preview not available

Abstract

Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.

Page Thumbnails

  • Thumbnail: Page 
1943
    1943
  • Thumbnail: Page 
1944
    1944
  • Thumbnail: Page 
1945
    1945
  • Thumbnail: Page 
1946
    1946
  • Thumbnail: Page 
1947
    1947
  • Thumbnail: Page 
1948
    1948
  • Thumbnail: Page 
1949
    1949
  • Thumbnail: Page 
1950
    1950
  • Thumbnail: Page 
1951
    1951