Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Arabidopsis Callose Synthase Gene GSL8 Is Required for Cytokinesis and Cell Patterning

Xiong-Yan Chen, Lin Liu, EunKyoung Lee, Xiao Han, Yeonggil Rim, Hyosub Chu, Seon-Won Kim, Fred Sack and Jae-Yean Kim
Plant Physiology
Vol. 150, No. 1 (May, 2009), pp. 105-113
Stable URL: http://www.jstor.org/stable/40537841
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Arabidopsis Callose Synthase Gene GSL8 Is Required for Cytokinesis and Cell Patterning
Preview not available

Abstract

Cytokinesis is the division of the cytoplasm and its separation into two daughter cells. Cell plate growth and cytokinesis appear to require callose, but direct functional evidence is still lacking. To determine the role of callose and its synthesis during cytokinesis, we identified and characterized mutants in many members of the GLUCAN SYNTHASE-LIKE (GSL; or CALLOSE SYNTHASE) gene family in Arabidopsis (Arabidopsis thaliana). Most gsl mutants (gsl1-gsl7, gsl9, gsl11, and gsl12) exhibited roughly normal seedling growth and development. However, mutations in GSL8, which were previously reported to be gametophytic lethal, were found to produce seedlings with pleiotropic defects during embryogenesis and early vegetative growth. We found cell wall stubs, two nuclei in one cell, and other defects in cell division in homozygous gsl8 insertional alíeles. In addition, gsl8 mutants and inducible RNA interference lines of GSL8 showed reduced callose deposition at cell plates and/or new cell walls. Together, these data show that the GSL8 gene encodes a putative callose synthase required for cytokinesis and seedling maturation. In addition, gsl8 mutants disrupt cellular and tissue-level patterning, as shown by the presence of clusters of stornata in direct contact and by islands of excessive cell proliferation in the developing epidermis. Thus, GSL8 is required for patterning as well as cytokinesis during Arabidopsis development.

Page Thumbnails

  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113