Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Systems-Level Analysis of the Effects of Light Quality on the Metabolism of a Cyanobacterium

Abhay K. Singh, Maitrayee Bhattacharyya-Pakrasi, Thanura Elvitigala, Bijoy Ghosh, Rajeev Aurora and Himadri B. Pakrasi
Plant Physiology
Vol. 151, No. 3 (Nov., 2009), pp. 1596-1608
Stable URL: http://www.jstor.org/stable/40537979
Page Count: 13
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Systems-Level Analysis of the Effects of Light Quality on the Metabolism of a Cyanobacterium
Preview not available

Abstract

Photosynthetic organisms experience changes in light quantity and light quality in their natural habitat. In response to changes in light quality, these organisms redistribute excitation energy and adjust photosystem stoichiometry to maximize the utilization of available light energy. However, the response of other cellular processes to changes in light quality is mostly unknown. Here, we report a systematic investigation into the adaptation of cellular processes in Synechocystis species PCC 6803 to light that preferentially excites either photosystem II or photosystem I. We find that preferential excitation of photosystem II and photosystem I induces massive reprogramming of the Synechocystis transcriptome. The rewiring of cellular processes begins as soon as Synechocystis senses the imbalance in the excitation of reaction centers. We find that Synechocystis utilizes the cyclic photosynthetic electron transport chain for ATP generation and a major part of the respiratory pathway to generate reducing equivalents and carbon skeletons during preferential excitation of photosystem I. In contrast, cytochrome c oxidase and photosystem I act as terminal components of the photosynthetic electron transport chain to produce sufficient ATP and limited amounts of NADPH and reduced ferredoxin during preferential excitation of photosystem II. To overcome the shortage of NADPH and reduced ferredoxin, Synechocystis preferentially activates transporters and acquisition pathways to assimilate ammonia, urea, and arginine over nitrate as a nitrogen source. This study provides a systematic analysis of cellular processes in cyanobacteria in response to preferential excitation and shows that the cyanobacterial cell undergoes significant adjustment of cellular processes, many of which were previously unknown.

Page Thumbnails

  • Thumbnail: Page 
1596
    1596
  • Thumbnail: Page 
1597
    1597
  • Thumbnail: Page 
1598
    1598
  • Thumbnail: Page 
1599
    1599
  • Thumbnail: Page 
1600
    1600
  • Thumbnail: Page 
1601
    1601
  • Thumbnail: Page 
1602
    1602
  • Thumbnail: Page 
1603
    1603
  • Thumbnail: Page 
1604
    1604
  • Thumbnail: Page 
1605
    1605
  • Thumbnail: Page 
1606
    1606
  • Thumbnail: Page 
1607
    1607
  • Thumbnail: Page 
1608
    1608