Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Option Valuation with Conditional Heteroskedasticity and Nonnormality

Peter Christoffersen, Redouane Elkamhi, Bruno Feunou and Kris Jacobs
The Review of Financial Studies
Vol. 23, No. 5 (May 2010), pp. 2139-2183
Stable URL: http://www.jstor.org/stable/40604840
Page Count: 45
  • Download ($42.00)
  • Cite this Item
Option Valuation with Conditional Heteroskedasticity and Nonnormality
Preview not available

Abstract

We provide results for the valuation of European-style contingent claims for a large class of specifications of the underlying asset returns. Our valuation results obtain in a discrete time, infinite state space setup using the no-arbitrage principle and an equivalent martingale measure (EMM). Our approach allows for general forms of heteroskedasticity in returns, and valuation results for homoskedastic processes can be obtained as a special case. It also allows for conditional nonnormal return innovations, which is critically important because heteroskedasticity alone does not suffice to capture the option smirk. We analyze a class of EMMs for which the resulting risk-neutral return dynamics are from the same family of distributions as the physical return dynamics. In this case, our framework nests the valuation results obtained by Duan (1995) and Heston and Nandi (2000) by allowing for a time-varying price of risk and nonnormal innovations. We provide extensions of these results to more general EMMs and to discrete-time stochastic volatility models, and we analyze the relation between our results and those obtained for continuous-time models.

Page Thumbnails

  • Thumbnail: Page 
[2139]
    [2139]
  • Thumbnail: Page 
2140
    2140
  • Thumbnail: Page 
2141
    2141
  • Thumbnail: Page 
2142
    2142
  • Thumbnail: Page 
2143
    2143
  • Thumbnail: Page 
2144
    2144
  • Thumbnail: Page 
2145
    2145
  • Thumbnail: Page 
2146
    2146
  • Thumbnail: Page 
2147
    2147
  • Thumbnail: Page 
2148
    2148
  • Thumbnail: Page 
2149
    2149
  • Thumbnail: Page 
2150
    2150
  • Thumbnail: Page 
2151
    2151
  • Thumbnail: Page 
2152
    2152
  • Thumbnail: Page 
2153
    2153
  • Thumbnail: Page 
2154
    2154
  • Thumbnail: Page 
2155
    2155
  • Thumbnail: Page 
2156
    2156
  • Thumbnail: Page 
2157
    2157
  • Thumbnail: Page 
2158
    2158
  • Thumbnail: Page 
2159
    2159
  • Thumbnail: Page 
2160
    2160
  • Thumbnail: Page 
2161
    2161
  • Thumbnail: Page 
2162
    2162
  • Thumbnail: Page 
2163
    2163
  • Thumbnail: Page 
2164
    2164
  • Thumbnail: Page 
2165
    2165
  • Thumbnail: Page 
2166
    2166
  • Thumbnail: Page 
2167
    2167
  • Thumbnail: Page 
2168
    2168
  • Thumbnail: Page 
2169
    2169
  • Thumbnail: Page 
2170
    2170
  • Thumbnail: Page 
2171
    2171
  • Thumbnail: Page 
2172
    2172
  • Thumbnail: Page 
2173
    2173
  • Thumbnail: Page 
2174
    2174
  • Thumbnail: Page 
2175
    2175
  • Thumbnail: Page 
2176
    2176
  • Thumbnail: Page 
2177
    2177
  • Thumbnail: Page 
2178
    2178
  • Thumbnail: Page 
2179
    2179
  • Thumbnail: Page 
2180
    2180
  • Thumbnail: Page 
2181
    2181
  • Thumbnail: Page 
2182
    2182
  • Thumbnail: Page 
2183
    2183