Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

BRACKISH-WATER ICHNOLOGICAL TRENDS IN A MICROTIDAL BARRIER ISLAND-EMBAYMENT SYSTEM, KOUCHIBOUGUAC NATIONAL PARK, NEW BRUNSWICK, CANADA

TYLER E. HAUCK, SHAHIN E. DASHTGARD, GEORGE PEMBERTON and MURRAY K. GINGRAS
PALAIOS
Vol. 24, No. 7/8 (July-August 2009), pp. 478-496
Stable URL: http://www.jstor.org/stable/40606439
Page Count: 19
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
BRACKISH-WATER ICHNOLOGICAL TRENDS IN A MICROTIDAL BARRIER ISLAND-EMBAYMENT SYSTEM, KOUCHIBOUGUAC NATIONAL PARK, NEW BRUNSWICK, CANADA
Preview not available

Abstract

A complex variety of marginal-marine microtidal environments from Kouchibouguac Bay, New Brunswick, Canada, present an opportunity to ichnologically and sedimentologically characterize microtidal settings in a high-latitude, temperate subarctic climate. Variations in bioturbate fabrics and distribution of infauna, analysis of the distributions of sediments and physical sedimentary structures, and the distribution of total organic carbon (TOC) can be associated with characteristic depositional processes. From these data typical sedimentary facies associations are produced. In outer estuary tidal inlets and areas of the flood-tidal deltas, strong currents and wave action eradicate the ichnological signature, resulting in variably laminated and bedded sand.In the central estuary, infauna activity coupled with generally low hydraulic energy levels lead to an absence of primary sedimentary structures. The inner estuary near bay-head deltas experiences riverine currents and freshwater influence. As a consequence, primary sedimentary structures are preserved. Mapping of infauna, sediment texture, TOC, and salinity reveals strong links between animal distribution and these three physicochemical parameters. Consequently, the distribution and type of bioturbation observed is at least passively related to grain size, TOC, and salinity. In outer estuaries and lower-central estuaries, salinity is near marine levels and fluctuates minimally. The distribution of infauna in these areas corresponds directly to sediment texture and TOC. Further up the estuaries, lower and fluctuating salinities—in addition to sediment texture and TOC content— control the distribution and diversity of infauna. Mapping of diversity and infaunal size up-estuary reveals two significant trends attributable to salinity stresses: (1) vermiform diminution, and (2) a significant decrease in infaunal diversity.

Page Thumbnails

  • Thumbnail: Page 
[478]
    [478]
  • Thumbnail: Page 
479
    479
  • Thumbnail: Page 
480
    480
  • Thumbnail: Page 
481
    481
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483
  • Thumbnail: Page 
484
    484
  • Thumbnail: Page 
485
    485
  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496