Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Homogeneous Production Functions with Constant or Variable Elasticity of Substitution

ANDRES VÁZQUEZ
Zeitschrift für die gesamte Staatswissenschaft / Journal of Institutional and Theoretical Economics
Bd. 127, H. 1. (Januar 1971), pp. 7-26
Stable URL: http://www.jstor.org/stable/40749428
Page Count: 20
  • Read Online (Free)
  • Download ($24.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Homogeneous Production Functions with Constant or Variable Elasticity of Substitution
Preview not available

Abstract

Dieser Aufsatz behandelt die homogenen Produktionsfunktionen in zwei Faktoren mit konstanter oder variabler Substitutionselastizitat. Im ersten Teil wird gezeigt, daB die bloBe Integration von drei alternativen Formeln fur die Substitutionselastizitat auf geradem Wege die algebraische Form der CES-Produktionsfunktion mit nicht notwendigerweise konstanten Skalenertragen ergibt. Unter der Voraussetzung, daB 1. das durchschnittliche Arbeitsprodukt in linearer Relation zum Grenzprodukt dieses Faktors und zum Kapital/Arbeit-Verhaltnis steht und 2. das Verhaltnis der Produktionselastizitaten in bezug auf Arbeit und Kapital und das Kapital/Arbeit-Verhaltnis eine potentiale Form hat, werden im zweiten Teil zwei neue Produktionsfunktionen herausgearbeitet, die in gewisser Hinsicht allgemeiner als die CESFunktion sind. Diese neuen Produktionsfunktionen haben die Eigenschaften von a) Skalenertragen, b) variablen Substitutionselastizitaten, c) positiven und sinkenden Grenzprodukten und d) Isoquanten convex zum Ursprung uber die relevanten Inputreihen. Andererseits schlieBen beide Funktionen die geradlinigen und die rechtwinkligen Isoquanten ebenso wie die Cobb-Douglas-Funktion als Spezialfalle ein. Weiterhin urnfaBt die erste dieser neuen Funktionen das CMS-Bruno-Modell, wahrend die CES-und die Revankar's IVES-Produktionsfunktionen besondere Falle der zweiten vorgeschlagenen Funktion sind.

Page Thumbnails

  • Thumbnail: Page 
[7]
    [7]
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26