Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Plasma Metabolite Levels Predict Individual Body-Mass Changes in a Small Long-Distance Migrant, the Garden Warbler

Susanne Jenni-Eiermann and Lukas Jenni
The Auk
Vol. 111, No. 4 (Oct., 1994), pp. 888-899
DOI: 10.2307/4088821
Stable URL: http://www.jstor.org/stable/4088821
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Plasma Metabolite Levels Predict Individual Body-Mass Changes in a Small Long-Distance Migrant, the Garden Warbler
Preview not available

Abstract

Change in body mass is an important measurement in many studies addressing changes in energy stores or condition. Usually, change in body mass is measured in birds caught twice, but this has a number of drawbacks (e.g. low number of retraps, retraps not representative of all first captures, adverse effects of first capture on body-mass development). Therefore, we investigated whether plasma metabolites correlate with body-mass change, and which metabolites could be used to predict body-mass change in birds caught once. In an experiment, 20 Garden Warblers (Sylvia borin) were given different amounts of food to induce stable, increasing, and decreasing body masses. Most of the eight plasma metabolites we examined were significantly correlated with the change in body mass between early morning and midday, the time of blood sampling, but not with body mass or various measures of activity. Metabolites that are known to characterize resorption were elevated in birds gaining body mass and metabolites characteristic of fasting were elevated in birds losing body mass. Triglycerides and β-hydroxy-butyrate together explained 61% of the variation in body-mass change (triglycerides alone 44% and β-hydroxy-butyrate alone 51%). These metabolites may be used to predict body-mass change in birds caught once, provided that the reliability and sensitivity of this method are checked in field tests.

Page Thumbnails

  • Thumbnail: Page 
888
    888
  • Thumbnail: Page 
889
    889
  • Thumbnail: Page 
890
    890
  • Thumbnail: Page 
891
    891
  • Thumbnail: Page 
892
    892
  • Thumbnail: Page 
893
    893
  • Thumbnail: Page 
894
    894
  • Thumbnail: Page 
895
    895
  • Thumbnail: Page 
896
    896
  • Thumbnail: Page 
897
    897
  • Thumbnail: Page 
898
    898
  • Thumbnail: Page 
899
    899