Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria

David Boal and Ray Ng
Paleobiology
Vol. 36, No. 4 (Fall, 2010), pp. 555-572
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/40926782
Page Count: 18
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria
Preview not available

Abstract

Variations in the orientation and cross-sectional shape of filamentous microfossils provide quantitative measures for characterizing them and probing their native mechanical structure. Here, we determine the tangent correlation length, which is the characteristic length scale for the variation in direction of a sinuous curve, for both a suite of Precambrian filamentous microfossils and six strains of modern filamentous cyanobacteria, all with diameters of a few microns. Among 1.9–2-Ga microfossils, Gunflintia grandis, Gunflintia minuta and Eomycetopsis filiformis possess, respectively, correlation lengths of 360 ± 40 µm, 670 ± 40 µm and 700 ± 100 µm in two dimensions. Hundreds of times larger than the filament diameters, these values lie in the same range as the cyanobacteria Geitlerinema and Pseudanabaena, but are smaller than several strains of Oscillatoria. In contrast, the 2-Ga microfossil trichome Halythrix, is found to have a short correlation length of 29 ± 4 µm in two dimensions. Micron-wide pyritic replacement filaments observed in 3.23-Ga volcanogenic deposits also display a modest correlation length of 100 ± 15 µm in two dimensions. Sequences of species in two genera of our modern cyanobacteria possess tangent correlation lengths that rise as a power of the filament diameter D—D 3.3 ± 1 for Oscillatoria and D 5.1 ± 1 for Geitlerinema. These results can be compared with power-law scaling of D 3 for hollow tubes and D⁴ for solid cylinders that is expected from continuum mechanics. Extrapolating the observed scaling behavior to smaller filament diameters, the measured correlation length of the pyrite filaments is consistent with modern Geitlerinema whereas that of Halythrix lies not far from modern Oscillatoria, suggesting that there may be structural similarities among these genera.

Page Thumbnails

  • Thumbnail: Page 
[555]
    [555]
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572