Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems

Jonathan A. Sherratt
SIAM Journal on Applied Mathematics
Vol. 63, No. 5 (Jun. - Aug., 2003), pp. 1520-1538
Stable URL: http://www.jstor.org/stable/4096049
Page Count: 19
  • Subscribe ($19.50)
  • Cite this Item
Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems
Preview not available

Abstract

Periodic travelling waves are a fundamental solution form in oscillatory reaction-diffusion equations. Here I discuss the generation of periodic travelling waves in a reaction-diffusion system of the generic λ-ω form. I present numerical results suggesting that when this system is solved on a semi-infinite domain subject to Dirichlet boundary conditions in which the variables are fixed at zero, periodic travelling waves develop in the domain. The amplitude and speed of these waves are independent of the initial conditions, which I generate randomly in numerical simulations. Using a combination of numerical and analytical methods, I investigate the mechanism of periodic travelling wave selection. By looking for an appropriate similarity solution, I reduce the problem to an ODE system. Using this, I derive a formula for the selected speed and amplitude as a function of parameters. Finally, I discuss applications of this work to ecology.

Page Thumbnails

  • Thumbnail: Page 
1520
    1520
  • Thumbnail: Page 
1521
    1521
  • Thumbnail: Page 
1522
    1522
  • Thumbnail: Page 
1523
    1523
  • Thumbnail: Page 
1524
    1524
  • Thumbnail: Page 
1525
    1525
  • Thumbnail: Page 
1526
    1526
  • Thumbnail: Page 
1527
    1527
  • Thumbnail: Page 
1528
    1528
  • Thumbnail: Page 
1529
    1529
  • Thumbnail: Page 
1530
    1530
  • Thumbnail: Page 
1531
    1531
  • Thumbnail: Page 
1532
    1532
  • Thumbnail: Page 
1533
    1533
  • Thumbnail: Page 
1534
    1534
  • Thumbnail: Page 
1535
    1535
  • Thumbnail: Page 
1536
    1536
  • Thumbnail: Page 
1537
    1537
  • Thumbnail: Page 
1538
    1538