Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Efficiency of Constrained Longitudinal Data Analysis Versus Longitudinal Analysis of Covariance

Kaifeng Lu
Biometrics
Vol. 66, No. 3 (SEPTEMBER 2010), pp. 891-896
Stable URL: http://www.jstor.org/stable/40962460
Page Count: 6
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Efficiency of Constrained Longitudinal Data Analysis Versus Longitudinal Analysis of Covariance
Preview not available

Abstract

In randomized clinical trials, measurements are often collected on each subject at a baseline visit and several post-randomization time points. The longitudinal analysis of covariance in which the postbaseline values form the response vector and the baseline value is treated as a covariate can be used to evaluate the treatment differences at the postbaseline time points. Liang and Zeger (2000, Sankhya: The Indian Journal of Statistics, Series 62, 134-148) propose a constrained longitudinal data analysis in which the baseline value is included in the response vector together with the postbaseline values and a constraint of a common baseline mean across treatment groups is imposed on the model as a result of randomization. If the baseline value is subject to missingness, the constrained longitudinal data analysis is shown to be more efficient for estimating the treatment differences at postbaseline time points than the longitudinal analysis of covariance. The efficiency gain increases with the number of subjects missing baseline and the number of subjects missing all postbaseline values, and, for the pre-post design, decreases with the absolute correlation between baseline and postbaseline values.

Page Thumbnails

  • Thumbnail: Page 
891
    891
  • Thumbnail: Page 
892
    892
  • Thumbnail: Page 
893
    893
  • Thumbnail: Page 
894
    894
  • Thumbnail: Page 
895
    895
  • Thumbnail: Page 
896
    896