Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Influence of genetic polymorphisms of biotransformation enzymes on gene mutations, strand breaks of deoxyribonucleic acid, and micronuclei in mononuclear blood cells and urinary 8-hydroxydeoxyguanosine in potroom workers exposed to polyaromatic hydrocarbons

Ulrica Carstensen, Sai-Mei Hou, Anna-Karin Alexandrie, Benkt Högstedt, Christer Tagesson, Margareta Warholm, Agneta Rannug, Bo Lambert, Anna Axmon and Lars Hagmar
Scandinavian Journal of Work, Environment & Health
Vol. 25, No. 4 (August 1999), pp. 351-360
Stable URL: http://www.jstor.org/stable/40966911
Page Count: 10
  • Read Online (Free)
  • Download ($23.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Influence of genetic polymorphisms of biotransformation enzymes on gene mutations, strand breaks of deoxyribonucleic acid, and micronuclei in mononuclear blood cells and urinary 8-hydroxydeoxyguanosine in potroom workers exposed to polyaromatic hydrocarbons
Preview not available

Abstract

Objectives Airborne exposure to polycyclic aromatic hydrocarbons (PAH) in the potroom of an aluminum reduction plant was studied in relation to genotoxic or mutagenic effects, and the possibility of host genotypes of different metabolizing enzymes modifying associations between PAH exposure and genotoxic or mutagenic response was assessed. Subjects and methods Ninety-eight male potroom workers and 55 male unexposed blue-collar workers constituted the study population. Micronuclei in CD4⁺ and CD8⁺ lymphocytes, DNA (deoxyribonucleic acid) single-strand breaks, hypoxanthine guanine phosphoribosyl transferase (HPRT) mutation frequency, and genotype for cytochrome P-4501A1, glutathione transferases M1, T1 and P1, and microsomal epoxide hydrolase were analyzed using peripheral mononuclear cells. Urine samples were collected for the analysis of 8-hydroxydeoxyguanosine. Results Micronuclei in peripheral CD4⁺ and CD8⁺ lymphocytes, DNA single-strand breaks, HPRT mutation frequency, and 8-hydroxydeoxyguanosine in urine did not differ between the potroom workers and the unexposed referents. With the exception of an observed exposure-response relationship for potroom workers with Tyr/Tyr genotype for microsomal epoxide hydrolase, between airborne PAH and CD8⁺ micronuclei, no correlations were found between any of the genotoxicity biomarkers and any of the exposure measures (airborne particulate PAH, airborne gas phase PAH, length of employment in the potroom, 1-hydroxypyrene in urine, or -DNA adducts in peripheral lymphocytes), also when genotypes for biotransforamtion enzymes were considered. Conclusions The results indicate that the employed biomarkers of mutagenic or genotoxic effects are not appropriate for surveillance studies of potroom workers exposed to current airborne levels of PAH. The significance of the correlation between airborne PAH and CD8⁺ micronuclei in Tyr/Tyr genotype subjects should be evaluated.

Page Thumbnails

  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360