Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Norms on Earthquake Measures and Zygmund Functions

Jun Hu
Proceedings of the American Mathematical Society
Vol. 133, No. 1 (Jan., 2005), pp. 193-202
Stable URL: http://www.jstor.org/stable/4097842
Page Count: 10
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Norms on Earthquake Measures and Zygmund Functions
Preview not available

Abstract

The infinitesimal earthquake theorem gives a one-to-one correspondence between Thurston bounded earthquake measures and normalized Zygmund bounded functions. In this paper, we provide an intrinsic proof of a theorem given in an earlier paper by the author; that is, we show that the cross-ratio norm of a Zygmund bounded function is equivalent to the Thurston norm of the earthquake measure in the correspondence.

Page Thumbnails

  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202