## Access

You are not currently logged in.

Access JSTOR through your library or other institution:

## If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

# Notes on Some New Kinds of Pseudoprimes

Zhenxiang Zhang
Mathematics of Computation
Vol. 75, No. 253 (Jan., 2006), pp. 451-460
Stable URL: http://www.jstor.org/stable/4100162
Page Count: 10
Preview not available

## Abstract

J. Browkin defined in his recent paper (Math. Comp. 73 (2004), pp. 1031-1037) some new kinds of pseudoprimes, called Sylow p-pseudoprimes and elementary Abelian p-pseudoprimes. He gave examples of strong pseudoprimes to many bases which are not Sylow p-pseudoprime to two bases only, where p = 2 or 3. In this paper, in contrast to Browkin's examples, we give facts and examples which are unfavorable for Browkin's observation to detect compositeness of odd composite numbers. In Section 2, we tabulate and compare counts of numbers in several sets of pseudoprimes and find that most strong pseudoprimes are also Sylow 2-pseudoprimes to the same bases. In Section 3, we give examples of Sylow p-pseudoprimes to the first several prime bases for the first several primes p. We especially give an example of a strong pseudoprime to the first six prime bases, which is a Sylow p-pseudoprime to the same bases for all $p \in \{2, 3, 5, 7, 11, 13\}$. In Section 4, we define n to be a k-fold Carmichael Sylow pseudoprime, if it is a Sylow p-pseudoprime to all bases prime to n for all the first k smallest odd prime factors p of n - 1. We find and tabulate all three 3-fold Carmichael Sylow pseudoprimes $< 10^{16}$. In Section 5, we define a positive odd composite n to be a Sylow uniform pseudoprime to bases b1, ..., bk, or a Syl-upsp(b1, ..., bk) for short, if it is a $Syl_{p}$-psp(b1, ..., bk) for all the first $\omega(n - 1) - 1$ small prime factors p of n - 1, where $\omega(n - 1)$ is the number of distinct prime factors of n - 1. We find and tabulate all the 17 Syl-upsp(2, 3, 5)'s $< 10^{16}$ and some Syl-upsp(2, 3, 5, 7, 11)'s $< 10^{24}$. Comparisons of effectiveness of Browkin's observation with Miller tests to detect compositeness of odd composite numbers are given in Section 6.

• 451
• 452
• 453
• 454
• 455
• 456
• 457
• 458
• 459
• 460