Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo

Shanta Dhar, Nagesh Kolishetti, Stephen J. Lippard, Omid C. Farokhzad and Chad A. Mirkin
Proceedings of the National Academy of Sciences of the United States of America
Vol. 108, No. 5 (February 1, 2011), pp. 1850-1855
Stable URL: http://www.jstor.org/stable/41001780
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Targeted delivery of a cisplatin prodrug for safer and more effective
              prostate cancer therapy in vivo
Preview not available

Abstract

Targeted delivery and controlled release of inactive platinum (Pt) prodrugs may offer a new approach to improve the efficacy and tolerability of the Pt family of drugs, which are used to treat 50% of all cancers today. Using prostate cancer (PCa) as a model disease, we previously described the engineering of aptamer (Apt)-targeted poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) encapsulating a Pt(IV) prodrug c,t,c[Pt(NH₃)₂-(O₂CCH₂CH₂CH₂CH₂CH₃)₂Cl₂] (1) (Pt-PLGA-b-PEG-Apt-NP), which target the extracellular domain of the prostate specific membrane antigen (PSMA), for enhanced in vitro cytotoxicity. Here we demonstrate enhanced in vivo pharmacokinetics (PK), bio-distribution, tolerability, and efficacy of Pt-PLGA-b-PEG-Apt-NP (150±15 nm encapsulating ~5% wt/wt Pt(IV) prodrug) when compared to cisplatin administered in its conventional form in normal Sprague Dawley rats, Swiss Albino mice, and the PSMA-expressing LNCaP subcutaneous xenograft mouse model of PCa, respectively. The 10-d maximum tolerated dose following a single i.v. injection of Pt-PLGA-b-PEG-NP in rats and mice was determined at 40 mg/kg and 5 mg/kg, respectively. PK studies with Pt-PLGA-b-PEG-NP revealed prolonged Pt persistence in systemic blood circulation and decreased accumulation of Pt in the kidneys, a major target site of cisplatin toxicity. Pt-PLGA-b-PEG-Apt-NPs further displayed the significant dose-sparing characteristics of the drug, with equivalent antitumor efficacy in LNCaP xenografts at 1/3 the dose of cisplatin administered in its conventional form (0.3 mg/kg vs. 1 mg/kg). When considering the simultaneous improvement in tolerability and efficacy, the Pt-PLGA-b-PEG-Apt NP provides a remarkable improvement in the drug therapeutic index.

Page Thumbnails

  • Thumbnail: Page 
[1850]
    [1850]
  • Thumbnail: Page 
1851
    1851
  • Thumbnail: Page 
1852
    1852
  • Thumbnail: Page 
1853
    1853
  • Thumbnail: Page 
1854
    1854
  • Thumbnail: Page 
1855
    1855