Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Global CO₂ rise leads to reduced maximum stomatal conductance in Florida vegetation

Emmy I. Lammertsma, Hugo Jan de Boer, Stefan C. Dekker, David L Dilcher, André F. Lotter and Friederike Wagner-Cremer
Proceedings of the National Academy of Sciences of the United States of America
Vol. 108, No. 10 (March 8, 2011), pp. 4035-4040
Stable URL: http://www.jstor.org/stable/41061056
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Global CO₂ rise leads to reduced maximum stomatal conductance in Florida vegetation
Preview not available

Abstract

A principle response of C3 plants to increasing concentrations of atmospheric CO₂ (CO₂) is to reduce transpirational water loss by decreasing stomatal conductance (g s ) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate. Therefore, it is important to determine the adaptation of vegetation to the expected anthropogenic rise in CO₂. Short-term stomatal opening-closing responses of vegetation to increasing CO₂ are described by free-air carbon enrichments growth experiments, and evolutionary adaptations are known from the geological record. However, to date the effects of decadal to centennial CO₂ perturbations on stomatal conductance are still largely unknown. Here we reconstruct a 34% (± 12%) reduction in maximum stomatal conductance (g smax ) per 100 ppm CO₂ increase as a result of the adaptation in stomatal density (D) and pore size at maximal stomatal opening (a max ) of nine common species from Florida over the past 150 y. The species-specific g smax values are determined by different evolutionary development, whereby the angiosperms sampled generally have numerous small stomata and high g smax , and the conifers and fern have few large stomata and lower g smax . Although angiosperms and conifers use different D and a max adaptation strategies, our data show a coherent response in g smax to C0₂ rise of the past century. Understanding these adaptations of C3 plants to rising CO₂ after decadal to centennial environmental changes is essential for quantification of plant physiological forcing at timescales relevant for global warming, and they are likely to continue until the limits of their phenotypic plasticity are reached.

Page Thumbnails

  • Thumbnail: Page 
[4035]
    [4035]
  • Thumbnail: Page 
4036
    4036
  • Thumbnail: Page 
4037
    4037
  • Thumbnail: Page 
4038
    4038
  • Thumbnail: Page 
4039
    4039
  • Thumbnail: Page 
4040
    4040