Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Allometric Relationship between Resting Metabolic Rate and Body Mass in Wild Waterfowl (Anatidae) and an Application to Estimation of Winter Habitat Requirements

Michael R. Miller and John McA. Eadie
The Condor
Vol. 108, No. 1 (Feb., 2006), pp. 166-177
Stable URL: http://www.jstor.org/stable/4123205
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Allometric Relationship between Resting Metabolic Rate and Body Mass in Wild Waterfowl (Anatidae) and an Application to Estimation of Winter Habitat Requirements
Preview not available

Abstract

We examined the allometric relationship between resting metabolic rate (RMR; $kJ day^{-1}$) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function ($aMass^b$) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72-0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%-37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%-50% higher than previously predicted using general nonpasserine equations. /// Examinamos la $relaci\acute{o}n$ $alom\acute{e}trica$ entre la tasa $metab\acute{o}lica$ en reposo (TMR; $kJ d\acute{i}a^{-1}$) y la masa corporal (kg) en aves $acu\acute{a}ticas$ silvestres (Anatidae) mediante la $regresi\acute{o}n$ de la TMR con la masa corporal usando valores promedio para las especies obtenidos a partir de datos publicados en la literatura (18 fuentes, 54 medidas, 24 especies; todos los datos son de aves en cautiverio). No hubo una diferencia significativa entre las medidas de las fases en reposo (noche; n = 37), activa ($d\acute{i}a$; n = 14) y no especificada (n = 3) del ciclo diario (P > 0.10), por lo que juntamos estos datos para el análisis. La función de poder resultante ($aMasa^b$) para todas las aves (cisnes, gansos y patos) tuvo un exponente (b; pendiente de la $regresi\acute{o}n$) de 0.74, que fue indistinguible de aquel determinado con ecuaciones generales $com\acute{u}nmente$ usadas para aves no paserinas (0.72-0.73). En contraste, el coeficiente de proporcionalidad de masa (b; y-intercepto de masa = 1 kg) de 422 $excedi\acute{o}$ al obtenido a partir de ecuaciones para aves no paserinas por un 29% a 37%. Los análisis que usaron contrastes independientes corregidos por filogenia no alteraron sustancialmente la $ecuaci\acute{o}n$. Nuestros resultados sugieren que la $ecuaci\acute{o}n$ para las aves $acu\acute{a}ticas$ brinda una $estimaci\acute{o}n$ más apropiada de la TMR para los análisis $bioenerg\acute{e}ticos$ de los $an\acute{a}tidos$ que las ecuaciones generales para aves no paserinas. Cuando las ecuaciones de los $an\acute{a}tidos$ fueron ajustadas con un $m\acute{u}ltiplo$ para incorporar los costos $energ\acute{e}ticos$ de la vida en libertad, la $ecuaci\acute{o}n$ de los $an\acute{a}tidos$ $brind\acute{o}$ mejores estimados del gasto diario de $energ\acute{i}a$. Usando esta $ecuaci\acute{o}n$, estimamos que la extensión de humedales requerida para albergar a las poblaciones invernales de $an\acute{a}tidos$ $podr\acute{i}a$ ser un 37% a 50% mayor que la predicha previamente usando las ecuaciones generales para aves no paserinas.

Page Thumbnails

  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169
  • Thumbnail: Page 
170
    170
  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173
  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177