Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Radiation of the Australian Salicornioideae (Chenopodiaceae): Based on Evidence from Nuclear and Chloroplast DNA Sequences

K. A. Shepherd, M. Waycott and A. Calladine
American Journal of Botany
Vol. 91, No. 9 (Sep., 2004), pp. 1387-1397
Stable URL: http://www.jstor.org/stable/4123936
Page Count: 11
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Radiation of the Australian Salicornioideae (Chenopodiaceae): Based on Evidence from Nuclear and Chloroplast DNA Sequences
Preview not available

Abstract

In phylogenetic analyses of nuclear ITS and chloroplast trnL DNA sequences, the mostly endemic Australian genera; Halosarcia, Pachycornia, Sclerostegia, Tecticornia, and Tegicornia of the subfamily Salicornioideae (Chenopodiaceae) together form a monophyletic group, congruent with the hypothesis that they evolved from a common ancestor. However, limited genetic differentiation evident in both nrDNA and cpDNA sequences among these taxa suggests a possible rapid radiation. Based on fossil pollen records and climatic models of other authors, it is hypothesized that the expansion of the Australian endemic Salicornioideae most likely occurred during the Late Miocene to Pliocene, when increasing aridity caused the formation of extensive salt lakes along endorheic paleodrainage channels. Moreover, Australian Sarcocornia representatives were supported as monophyletic, nested within a paraphyletic Sarcocornia clade that also comprised European Salicornia in the ITS analysis. This suggests that Sarcocornia arrived in Australia subsequent to the ancestor of the Australian endemic genera most likely via long-distance dispersal.

Page Thumbnails

  • Thumbnail: Page 
1387
    1387
  • Thumbnail: Page 
1388
    1388
  • Thumbnail: Page 
1389
    1389
  • Thumbnail: Page 
1390
    1390
  • Thumbnail: Page 
1391
    1391
  • Thumbnail: Page 
1392
    1392
  • Thumbnail: Page 
1393
    1393
  • Thumbnail: Page 
1394
    1394
  • Thumbnail: Page 
1395
    1395
  • Thumbnail: Page 
1396
    1396
  • Thumbnail: Page 
1397
    1397