Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Molecular Phylogeography and Hybridization in Members of the Circumpolar Potentilla SECT. Niveae (Rosaceae)

Bente Eriksen and Mats H. T�pel
American Journal of Botany
Vol. 93, No. 3 (Mar., 2006), pp. 460-469
Stable URL: http://www.jstor.org/stable/4125500
Page Count: 10
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Molecular Phylogeography and Hybridization in Members of the Circumpolar Potentilla SECT. Niveae (Rosaceae)
Preview not available

Abstract

Glacial events and the formation of ice-free areas serving as refugia for plants and animals are important in shaping present patterns of genetic diversity in arctic areas. Beringia, situated in northeastern Russia and Alaska, has been pointed out as a major refugium. This study focuses on the historical biogeography of the circumpolar taxon Potentilla sect. Niveae. The taxonomy of the group is complex, most likely highly influenced by hybridization and apomixis. cpDNA microsatellites together with AFLP fragments were used to map the genetic variability in the section, from Beringia across the Canadian Arctic to Greenland. The data support the hypothesis that Beringia, as well as parts of adjacent arctic Canada, served as refugia during the Wisconsinan glaciation, and there is some evidence for a northern and a southern migration route out of Beringia. The hair type groups within sect. Niveae are more or less genetically distinct, and hybridization, especially with sect. Multifida, takes place. Haplotype diversity as well as frequency is at its maximum close to the Last Glacial Maximum ice cap edge. This pattern can be explained by merging of previously isolated refugia, by repeated extinction/colonization events close to the ice edge, and by hybridization among sympatric taxonomical lineages.

Page Thumbnails

  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469