Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Pollination of Australian Macrozamia Cycads (Zamiaceae): Effectiveness and Behavior of Specialist Vectors in a Dependent Mutualism

L. Irene Terry, Gimme H. Walter, John S. Donaldson, Elizabeth Snow, Paul I. Forster and Peter J. Machin
American Journal of Botany
Vol. 92, No. 6 (Jun., 2005), pp. 931-940
Stable URL: http://www.jstor.org/stable/4126069
Page Count: 10
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Pollination of Australian Macrozamia Cycads (Zamiaceae): Effectiveness and Behavior of Specialist Vectors in a Dependent Mutualism
Preview not available

Abstract

Complementary field and laboratory tests confirmed and quantified the pollination abilities of Tranes sp. weevils and Cycadothrips chadwicki thrips, specialist insects of their respective cycad hosts, Macrozamia machinii and M. lucida. No agamospermous seeds were produced when both wind and insects were excluded from female cones; and the exclusion of wind-vectored pollen alone did not eliminate seed set, because insects were able to reach the cone. Based on enclosure pollination tests, each weevil pollinates an average 26.2 ovules per cone and each thrips 2.4 ovules per cone. These pollinators visited similar numbers of ovules per cone in fluorescent dye tests that traced insect movement through cones. Fluorescent dye granules deposited by Cycadothrips were concentrated around the micropyle of each visited ovule, the site of pollen droplet release, where pollen must be deposited to achieve pollination. In contrast, Tranes weevils left dye scattered on different areas of each visited ovule, indicating that chance plays a greater role in this system. Each weevil and 25 thrips delivered 6.2 and 5.2 pollen grains, respectively, on average, to each visited ovule per cone, based on examination of dissected pollen canals. In sum, the pollination potential of 25 Cycadothrips approximates that of one Tranes weevil.

Page Thumbnails

  • Thumbnail: Page 
931
    931
  • Thumbnail: Page 
932
    932
  • Thumbnail: Page 
933
    933
  • Thumbnail: Page 
934
    934
  • Thumbnail: Page 
935
    935
  • Thumbnail: Page 
936
    936
  • Thumbnail: Page 
937
    937
  • Thumbnail: Page 
938
    938
  • Thumbnail: Page 
939
    939
  • Thumbnail: Page 
940
    940
Part of Sustainability