Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India

Susanne Schmidt and Marcus Nüsser
Arctic, Antarctic, and Alpine Research
Vol. 44, No. 1 (February 2012), pp. 107-121
Stable URL: http://www.jstor.org/stable/41416452
Page Count: 15
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India
Preview not available

Abstract

This study reports changes of small glaciers in the Trans-Himalayan Kang Yatze Massif, Ladakh, northwest India, between 1969 and 2010. The region covers an area of about 1000 km² and is located in a transitional position between predominantly receding glaciers of the Central Himalaya and some advancing ice masses of the Karakorum. A multi-temporal remote sensing approach based on satellite images (Corona, SPOT, Landsat) was used to detect and analyze area changes of 121 small glaciers and to measure the retreat of 60 cirque and valley glaciers between 1969 and 2010. Over the last four decades, the glaciated area decreased by about 14% (0.3% yr⁻¹) from 96.4 to 82.6 km² and the average ice front retreat amounts to 125 m (3 m yr⁻¹). The ice cover loss shows a high decadal variability with the maximum shrinkage between 1991 and 2002 (0.6% yr⁻¹), followed by a lower decrease rate since then (0.2% yr⁻¹). Due to the high variability of glacier change with a generally decreasing trend and a few stable glaciers, it becomes obvious that an extrapolation even on a regional scale is problematic. Therefore, a consideration of differing responses of various glacier types and glacier sizes is of utmost importance.

Page Thumbnails

  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121