Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Introduction and Synthesis: Plant Phylogeny and the Origin of Major Biomes

R. Toby Pennington, Quentin C. B. Cronk and James A. Richardson
Philosophical Transactions: Biological Sciences
Vol. 359, No. 1450, Plant Phylogeny and the Origin of Major Biomes (Oct. 29, 2004), pp. 1455-1464
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/4142293
Page Count: 10
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Introduction and Synthesis: Plant Phylogeny and the Origin of Major Biomes
Preview not available

Abstract

Phylogenetic trees based upon DNA sequence data, when calibrated with a dimension of time, allow inference of: (i) the pattern of accumulation of lineages through time; (ii) the time of origin of monophyletic groups; (iii) when lineages arrived in different geographical areas; (iv) the time of origin of biome-specific morphologies. This gives a powerful new view of the history of biomes that in many cases is not provided by the incomplete plant fossil record. Dated plant phylogenies for angiosperm families such as Leguminosae (Fabaceae), Melastomataceae sensu stricto, Annonaceae and Rhamnaceae indicate that long-distance, transoceanic dispersal has played an important role in shaping their distributions, and that this can obscure any effect of tectonic history, previously assumed to have been the major cause of their biogeographic patterns. Dispersal from other continents has also been i mportant in the assembly of the Amazonian rainforest flora and the Australian flora. Comparison of dated biogeographic patterns of plants and animals suggests that recent long-distance dispersal might be more prevalent in plants, which has major implications for community assembly and coevolution. Dated plant phylogenies also reveal the role of past environmental changes on the evolution of lineages in species-rich biomes, and show that recent Plio-Pleistocene diversification has contributed substantially to their current species richness. Because of the critical role of fossils and morphological characters in assigning ages to nodes in phylogenetic trees, future studies must include careful morphological consideration of fossils and their extant relatives in a phylogenetic context. Ideal study systems will be based upon DNA sequence data from multiple loci and multiple fossil calibrations. This allows cross-validation both of age estimates from different loci, and from different fossil calibrations. For a more complete view of biome history, future studies should emphasize full taxon sampling in ecologically important groups, and should focus on geographical areas for which few species-level phylogenies are available, such as tropical Africa and Asia. These studies are urgent because understanding the history of biomes can both inform conservation decisions, and help predict the effects of future environmental changes at a time when biodiversity is being impacted on an unprecedented scale.

Page Thumbnails

  • Thumbnail: Page 
1455
    1455
  • Thumbnail: Page 
1456
    1456
  • Thumbnail: Page 
1457
    1457
  • Thumbnail: Page 
1458
    1458
  • Thumbnail: Page 
1459
    1459
  • Thumbnail: Page 
1460
    1460
  • Thumbnail: Page 
1461
    1461
  • Thumbnail: Page 
1462
    1462
  • Thumbnail: Page 
1463
    1463
  • Thumbnail: Page 
1464
    1464