Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Estimating the probability of chronic disease: a Bayesian approach

AMIT CHOUDHURY, LABANANDA CHOUDHURY and MANAB DEKA
Genus
Vol. 64, No. 3/4 (July - December 2008), pp. 109-136
Stable URL: http://www.jstor.org/stable/41430854
Page Count: 28
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Estimating the probability of chronic disease: a Bayesian approach
Preview not available

Abstract

Dalla seconda guerra mondiale, si è osservato un aumento considerevole délie malattie croniche. Malattie cardiovascolari, diabete e tumore hanno da allora raggiunto livelli preoccupanti. La popolazione è consapevole del pericolo ma una maggiore informazione sul rischio specifico aiuterebbe a concentrare Pattenzione su tale fenómeno. La regressione, che quantifïca il cambiamento in odds, è un método largamente utilizzato. Tuttavia, una misura addizionale del rischio che specifichi la probabilità di essere colpito da una particolare malattia crónica puô aiutare a concentrare ulteriormente î'attenzione sulla gravita del fenómeno. In questo lavoro, si propone una procedura con approccio Bayesiano per la stima di tali probabilità. La técnica che ne deriva viene poi applicata ad un data set di primaria importanza. Since World War II, a discernible rise in chronic diseases has been noticed. Diseases like cardiovascular disease, diabetes, cancer have since attained alarming proportions. While citizens are conscious of the threat, specific risk related information can help to focus attention. One popular method for the same is regression, which quantifies the change in odds. While this has been widely used, we feel additional quantification specifying probability of being afflicted by a particular chronic disease can help to focus further on the gravity of the threat. In this paper, we propose a Bayesian procedure for the estimation of such probabilities. The technique derived is applied to a primary data set. Les maladies chroniques ont augmenté considérablement depuis la Seconde Guerre Mondiale. Depuis ce temps là les maladies cardiovasculaires, le diabète et les tumeurs ont atteint des niveaux inquiétants. La population est consciente du danger mais une information plus importante sur le risque spécifique aiderait à focaliser l'attention sur un tel phénomène. La régression qui quantifie le changements en odds, est une méthode largement utilisée. Toutefois, une mesure supplémentaire du risque qui précise la probabilité d'être atteint par une maladie chronique particulière peut aider à focaliser ultérieurement l'attention sur la gravité du phénomène. Ce travail propose une procédure d'approche Bayesienne quant à l'estimation de ces probabilités. Une technique est mise au point et elle sera appliquée par la suite à un ensemble de données d'importance primaire.

Page Thumbnails

  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136