Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Thermomechanical Restrictions of Continua

K. R. Rajagopal and A. R. Srinivasa
Proceedings: Mathematical, Physical and Engineering Sciences
Vol. 460, No. 2042 (Feb. 8, 2004), pp. 631-651
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/4143142
Page Count: 21
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Thermomechanical Restrictions of Continua
Preview not available

Abstract

The central idea proposed here is that, in entropy-producing processes, a specific choice from among a competing class of constitutive functions can be made so that the state variables evolve in a way that maximizes the rate of entropy production. When attention is restricted to quadratic forms for the rate of entropy production, the assumption leads to results that are fully in keeping with linear phenomenological relations that satisfy the Onsager relations. In other words, the usual linear evolution laws such as Fourier's law of heat conduction, Fick's law, Darcy's law, Newton's law of viscosity, etc., all corroborate this assumption. We clarify the difference between the maximum rate of entropy production criterion that characterizes choices among constitutive relations and the minimum entropy production theorem due to Onsager (1931) that characterizes steady states for special choices of the rate of entropy production. We then show that for other forms of entropy production that are not quadratic for which the Onsager relations and related theorems cannot be applied, we can use the procedure described here to obtain nonlinear laws. We demonstrate by means of an example that even yield-type phenomena can be accommodated within this framework, while they cannot within the framework of Onsager. We also discuss issues concerning constraints, especially in thermoelasticity within the context of our ideas.

Page Thumbnails

  • Thumbnail: Page 
631
    631
  • Thumbnail: Page 
632
    632
  • Thumbnail: Page 
633
    633
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651