Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis

Jhy-Gong Wang, Chih-Hao Chen, Ching-Te Chien and Hsu-Liang Hsieh
Plant Physiology
Vol. 156, No. 2 (June 2011), pp. 631-646
Stable URL: http://www.jstor.org/stable/41434331
Page Count: 16
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis
Preview not available

Abstract

FAR-RED INSENSITIVE219 (FIN219) in Arabidopsis (Arabidopsis thaliana) is involved in phytochrome A-mediated far-red (FR) light signaling. Previous genetic studies revealed that FIN219 acts as an extragenic suppressor of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). However, the molecular mechanism underlying the suppression of COP1 remains unknown. Here, we used a transgenic approach to study the regulation of COP1 by FIN219. Transgenic seedlings containing ectopie expression of the FIN219 amino (N)-terminal domain in wild-type Columbia (named NCox for the expression of the N-terminal coiled-coil domain and NTox for the N-terminal 300-amino acid region) exhibited a dominant-negative long-hypocotyl phenotype under FR light, reflected as reduced photomorphogenic responses and altered levels of COP1 and ELONGATED HYPOCOTYL5 (HY5). Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays revealed that FIN219 could interact with the WD-40 domain of COP1 and with its N-terminal coiled-coil domain through its carboxyl-terminal domain. Further in vivo coimmunoprecipitation study confirms that FIN219 interacts with COP1 under continuous FR light. Studies of the double mutant fin219-2/cop1-6 indicated that HY5 stability requires FIN219 under darkness and FR light. Moreover, FIN219 levels positively regulated by phytochrome A can modulate the subcellular location of COP1 and are differentially regulated by various fluence rates of FR light. We conclude that the dominant-negative long-hypocotyl phenotype conferred by NCox and NTox in a wild-type background was caused by the misregulation of COP1 binding with the carboxyl terminus of FIN219. Our data provide a critical mechanism controlling the key repressor COP1 in response to FR light.

Page Thumbnails

  • Thumbnail: Page 
631
    631
  • Thumbnail: Page 
632
    632
  • Thumbnail: Page 
633
    633
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646