Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Nonphosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated in Wheat Endosperm at Serine-404 by an SNF1-Related Protein Kinase Allosterically Inhibited by Ribose-5-Phosphate

Claudia Vanesa Piattoni, Diego Martín Bustos, Sergio Adrián Guerrero and Alberto Álvaro Iglesias
Plant Physiology
Vol. 156, No. 3 (July 2011), pp. 1337-1350
Stable URL: http://www.jstor.org/stable/41435043
Page Count: 14
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Nonphosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated in Wheat Endosperm at Serine-404 by an SNF1-Related Protein Kinase Allosterically Inhibited by Ribose-5-Phosphate
Preview not available

Abstract

Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-GaSPDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg²⁺ or Mn²⁺ (being Ca²⁺ independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRKl subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRKls from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia olerácea] leaves, SnRKl) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRKl present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.

Page Thumbnails

  • Thumbnail: Page 
1337
    1337
  • Thumbnail: Page 
1338
    1338
  • Thumbnail: Page 
1339
    1339
  • Thumbnail: Page 
1340
    1340
  • Thumbnail: Page 
1341
    1341
  • Thumbnail: Page 
1342
    1342
  • Thumbnail: Page 
1343
    1343
  • Thumbnail: Page 
1344
    1344
  • Thumbnail: Page 
1345
    1345
  • Thumbnail: Page 
1346
    1346
  • Thumbnail: Page 
1347
    1347
  • Thumbnail: Page 
1348
    1348
  • Thumbnail: Page 
1349
    1349
  • Thumbnail: Page 
1350
    1350