Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

Shiyou Lü, Huayan Zhao, Eugene P. Parsons, Changcheng Xu, Dylan K. Kosma, Xiaojing Xu, Daiyin Chao, Gregory Lohrey, Dhinoth K. Bangarusamy, Guangchao Wang, Ray A. Bressan and Matthew A. Jenks
Plant Physiology
Vol. 157, No. 3 (November 2011), pp. 1079-1092
Stable URL: http://www.jstor.org/stable/41435574
Page Count: 14
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis
Preview not available

Abstract

A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyheadl (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new alíele of Acetyl-Coenzyme A Carboxylasel (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant alíele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

Page Thumbnails

  • Thumbnail: Page 
1079
    1079
  • Thumbnail: Page 
1080
    1080
  • Thumbnail: Page 
1081
    1081
  • Thumbnail: Page 
1082
    1082
  • Thumbnail: Page 
1083
    1083
  • Thumbnail: Page 
1084
    1084
  • Thumbnail: Page 
1085
    1085
  • Thumbnail: Page 
1086
    1086
  • Thumbnail: Page 
1087
    1087
  • Thumbnail: Page 
1088
    1088
  • Thumbnail: Page 
1089
    1089
  • Thumbnail: Page 
1090
    1090
  • Thumbnail: Page 
1091
    1091
  • Thumbnail: Page 
1092
    1092