Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Simple Maximality Principle

Joel David Hamkins
The Journal of Symbolic Logic
Vol. 68, No. 2 (Jun., 2003), pp. 527-550
Stable URL: http://www.jstor.org/stable/4147695
Page Count: 24
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Simple Maximality Principle
Preview not available

Abstract

In this paper, following an idea of Christophe Chalons. I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence varphi holding in some forcing extension $V^P$ and all subsequent extensions $V^{P\ast Q}$ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\lozenge \square \varphi) \Rightarrow \square \varphi$, and is equivalent to the modal theory S5. In this article. I prove that the Maximality Principle is relatively consistent with ZFC. A boldface version of the Maximality Principle, obtained by allowing real parameters to appear in φ, is equiconsistent with the scheme asserting that $V_\delta \prec V$ for an inaccessible cardinal δ, which in turn is equiconsistent with the scheme asserting that ORD is Mahlo. The strongest principle along these lines is $\square MP\!_{\!\!\!\!\!\!_{\!\!_\sim}}$, which asserts that $MP\!_{\!\!\!\!\!\!_{\!\!_\sim}}$ holds in V and all forcing extensions. From this, it follows that $0^\#$ exists, that $x^\#$ exists for every set x, that projective truth is invariant by forcing, that Woodin cardinals are consistent and much more. Many open questions remain.

Page Thumbnails

  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545
  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550