Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Unveiling the biosynthetic puzzle of destruxins in Metarhizium species

Bing Wang, Qianjin Kang, Yuzhen Lu, Linquan Bai and Chengshu Wang
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 4 (January 24, 2012), pp. 1287-1292
Stable URL: http://www.jstor.org/stable/41477239
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Unveiling the biosynthetic puzzle of destruxins in Metarhizium species
Preview not available

Abstract

Insect pathogenic fungi produce a plethora of insecticidally and pharmaceutically active compounds, including 39 cyclohexadepsipeptide destruxins (dtxs). Even though dtxs were first discovered more than 50 y ago, the genes responsible for their biosynthesis were unknown until this study. Based on our comparative genomic information and targeted gene disruptions, we report the gene cluster for dtx biosynthesis in the insect pathogen Metarhizium robertsii. The nonribosomal peptide synthetase DtxS1 has six adenylation domains, two of which are capable of selecting different amino acids to synthesize dtx B and its analogs. The cytochrome P450 enzyme DtxS2 converts dtx B into other dtxs by a chain of reactions, each producing a new derivative. The aldo-keto reductase DtxS3 and aspartic acid decarboxylase DtxS4 are responsible for the conversion and provision of the first and last substrates for the dtx assembly line, respectively. Insect bioassays showed that dtxs could suppress both cellular and humoral immune responses thereby assisting fungal propagation in insects. The differing abilities of Metarhizium species to produce toxins is dependent on the presence of the dtxS1 gene. The toxigenic species are capable of killing multiple orders of insects, whereas the nontoxigenic Metarhizium spp. have narrow host ranges. Thus, the acquisition or retention of the dtx biosynthesis gene cluster in Metarhizium lineages has been coordinated with the evolution of fungal host specificity. The data from this study will facilitate the development of dtxs as bioinsecticides or Pharmaceuticals.

Page Thumbnails

  • Thumbnail: Page 
[1287]
    [1287]
  • Thumbnail: Page 
1288
    1288
  • Thumbnail: Page 
1289
    1289
  • Thumbnail: Page 
1290
    1290
  • Thumbnail: Page 
1291
    1291
  • Thumbnail: Page 
1292
    1292