Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Partly Free Semantics for Some Anderson-Like Ontological Proofs

Mirosław Szatkowski
Journal of Logic, Language, and Information
Vol. 20, No. 4 (Autumn 2011), pp. 475-512
Published by: Springer
Stable URL: http://www.jstor.org/stable/41488844
Page Count: 38
  • Download ($43.95)
  • Cite this Item
Partly Free Semantics for Some Anderson-Like Ontological Proofs
Preview not available

Abstract

Anderson-like ontological proofs, studied in this paper, employ contingent identity, free principles of quantification of the 1st order variables and classical principles of quantification of the 2nd order variables. All these theories are strongly complete wrt. classes of modal structures containing families of world-varying objectual domains of the 1st order and constant conceptual domains of the 2nd order. In such structures, terms of the 1st order receive only rigid extensions, which are elements of the union of all 1st order domains. Terms of the 2nd order receive extensions and intensions. Given a family of preselected world-varying objectual domains of the 2nd order, non-rigid extensions of the 2nd order terms belong always to a preselected domain connected with a given world. Rigid intensions of the 2nd order terms are chosen from among members of a conceptual domain of the 2nd order, which is the set of all functions from the set of worlds to the union of all 2nd order preselected domains such that values of these functions at a given world belong to a preselected domain connected with this world.

Page Thumbnails

  • Thumbnail: Page 
[475]
    [475]
  • Thumbnail: Page 
476
    476
  • Thumbnail: Page 
477
    477
  • Thumbnail: Page 
478
    478
  • Thumbnail: Page 
479
    479
  • Thumbnail: Page 
480
    480
  • Thumbnail: Page 
481
    481
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483
  • Thumbnail: Page 
484
    484
  • Thumbnail: Page 
485
    485
  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512