Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton

Patrick J. Horn, Andrew R. Korte, Pumima B. Neogi, Ebony Love, Johannes Fuchs, Kerstin Strupat, Ljudmilla Borisjuk, Vladimir Shulaev, Young-Jin Lee and Kent D. Chapman
The Plant Cell
Vol. 24, No. 2 (FEBRUARY 2012), pp. 622-636
Stable URL: http://www.jstor.org/stable/41489325
Page Count: 15
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton
Preview not available

Abstract

Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton [Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry.

Page Thumbnails

  • Thumbnail: Page 
[622]
    [622]
  • Thumbnail: Page 
623
    623
  • Thumbnail: Page 
624
    624
  • Thumbnail: Page 
625
    625
  • Thumbnail: Page 
626
    626
  • Thumbnail: Page 
627
    627
  • Thumbnail: Page 
628
    628
  • Thumbnail: Page 
629
    629
  • Thumbnail: Page 
630
    630
  • Thumbnail: Page 
631
    631
  • Thumbnail: Page 
632
    632
  • Thumbnail: Page 
633
    633
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636