Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Non-linear density-dependent effects of an intertidal ecosystem engineer

Christopher D. G. Harley and Jaclyn L. O'Riley
Oecologia
Vol. 166, No. 2 (June 2011), pp. 531-541
Published by: Springer in cooperation with International Association for Ecology
Stable URL: http://www.jstor.org/stable/41499855
Page Count: 11
  • Download ($43.95)
  • Cite this Item
Non-linear density-dependent effects of an intertidal ecosystem engineer
Preview not available

Abstract

Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate.

Page Thumbnails

  • Thumbnail: Page 
[531]
    [531]
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541