Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Early Stage Litter Decomposition Rates for Swiss Forests

Alexander Heim and Beat Frey
Biogeochemistry
Vol. 70, No. 3 (Sep., 2004), pp. 299-313
Published by: Springer
Stable URL: http://www.jstor.org/stable/4151499
Page Count: 15
  • Download ($43.95)
  • Cite this Item
Early Stage Litter Decomposition Rates for Swiss Forests
Preview not available

Abstract

The decomposition of belowground and aboveground tree litter was studied on five forest sites across Switzerland, ranging from 480 to 1500 m in altitude, and including calcareous and acidic soils. In addition to decomposition of local litter types (Picea abies, Fagus sylvatica, Castanea sativa), the decomposition of a standard beech litter was studied on all sites. After 2 years of decomposition, mass loss ranged from 18 to 71% across the different sites and litter types. The lowest decomposition rates were observed for beech roots, while mass loss was greatest for both spruce needles and spruce roots at the low-altitude site. Mass loss during the first winter correlated best with the content of watersoluble substances. After 1 year of incubation, mass loss of the standard litter varied less than did mass loss of local litter, but variance increased during the second year for aboveground litter. These observations indicate a smaller climatic influence on litter breakdown at the beginning of the decomposition process. Litter mass loss could be described using an exponential model with a decay constant depending on either lignin/N ratio or Mn content of the litter and annual soil temperature and throughfall precipitation as climatic variables. Modelling the observed mass loss indicated a strong influence of litter quality in the first 2 years of decomposition, confirming the field data from the standard litter experiment. The experiment will continue for some years and is expected to yield additional data on long-term decomposition.

Page Thumbnails

  • Thumbnail: Page 
[299]
    [299]
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313