Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Development of Functional Human Embryonic Stem Cell-Derived Neurons in Mouse Brain

Alysson R. Muotri, Kinichi Nakashima, Nicolas Toni, Vladislav M. Sandier and Fred H. Gage
Proceedings of the National Academy of Sciences of the United States of America
Vol. 102, No. 51, Enzymatic Rescue of Myelination (Dec. 20, 2005), pp. 18644-18648
Stable URL: http://www.jstor.org/stable/4152670
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Development of Functional Human Embryonic Stem Cell-Derived Neurons in
              Mouse Brain
Preview not available

Abstract

Human embryonic stem cells are pluripotent entities, theoretically capable of generating a whole-body spectrum of distinct cell types. However, differentiation of these cells has been observed only in culture or during teratoma formation. Our results show that human embryonic stem cells implanted in the brain ventricles of embryonic mice can differentiate into functional neural lineages and generate mature, active human neurons that successfully integrate into the adult mouse forebrain. Moreover, this study reveals the conservation and recognition of common signals for neural differentiation throughout mammalian evolution. The chimeric model will permit the study of human neural development in a live environment, paving the way for the generation of new models of human neurodegenerative and psychiatric diseases. The model also has the potential to speed up the screening process for therapeutic drugs.

Page Thumbnails

  • Thumbnail: Page 
[18644]
    [18644]
  • Thumbnail: Page 
18645
    18645
  • Thumbnail: Page 
18646
    18646
  • Thumbnail: Page 
18647
    18647
  • Thumbnail: Page 
18648
    18648