Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Single-Nucleotide Polymorphisms Associated with Skin Naphthyl-Keratin Adduct Levels in Workers Exposed to Naphthalene

Rong Jiang, John E. French, Vandy P. Stober, Juei-Chuan C. Kang-Sickel, Fei Zou and Leena A. Nylander-French
Environmental Health Perspectives
Vol. 120, No. 6 (JUNE 2012), pp. 857-864
Stable URL: http://www.jstor.org/stable/41549082
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl-keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP-NKA associations and investigated the potential impact of these SNPs along with personal and workplace (actors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl—keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 x 10⁻⁵). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure—dose relationship in a small, well-characterized exposed worker population.

Page Thumbnails

  • Thumbnail: Page 
857
    857
  • Thumbnail: Page 
858
    858
  • Thumbnail: Page 
859
    859
  • Thumbnail: Page 
860
    860
  • Thumbnail: Page 
861
    861
  • Thumbnail: Page 
862
    862
  • Thumbnail: Page 
863
    863
  • Thumbnail: Page 
864
    864