Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast

Mark Rinnerthaler, Sabrina Büttner, Peter Laun, Gino Heeren, Thomas K. Felder, Harald Klinger, Martin Weinberger, Klaus Stolze, Tomas Grousl, Jiri Hasek, Oldrich Benada, Ivana Frydlova, Andrea Klocker, Birgit Simon-Nobbe, Bettina Jansko, Hannelore Breitenbach-Koller, Tobias Eisenberg, Campbell W. Gourlay, Frank Madeo, William C. Burhans and Michael Breitenbach
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 22 (May 29, 2012), pp. 8658-8663
Stable URL: http://www.jstor.org/stable/41602611
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast
Preview not available

Abstract

The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM 14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.

Page Thumbnails

  • Thumbnail: Page 
[8658]
    [8658]
  • Thumbnail: Page 
8659
    8659
  • Thumbnail: Page 
8660
    8660
  • Thumbnail: Page 
8661
    8661
  • Thumbnail: Page 
8662
    8662
  • Thumbnail: Page 
8663
    8663