Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites

Gregory R. Bowman and Phillip L. Geissler
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 29 (July 17, 2012), pp. 11681-11686
Stable URL: http://www.jstor.org/stable/41685137
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Cryptic allosteric sites—transient pockets in a folded protein that are invisible to conventional experiments but can alter enzymatic activity via allosteric communication with the active site—are a promising opportunity for facilitating drug design by greatly expanding the repertoire of available drug targets. Unfortunately, identifying these sites is difficult typically requiring resourceintensive screening of large libraries of small molecules. Here, we demonstrate that Markov state models built from extensive computer simulations (totaling hundreds of microseconds of dynamics) can identify prospective cryptic sites from the equilibrium fluctuations of three medically relevant proteins—ß-lactamase, interleukin-2, and RNase H—even in the absence of any ligand. As in previous studies, our methods reveal a surprising variety of conformations—including bound-like configurations—that implies a role for conformational selection in ligand binding. Moreover, our analyses lead to a number of unique insights. First, direct comparison of simulations with and without the ligand reveals that there is still an important role for an induced fit during ligand binding to cryptic sites and suggests new conformations for docking. Second, correlations between amino acid sidechains can convey allosteric signals even in the absence of substantial backbone motions. Most importantly, our extensive sampling reveals a multitude of potential cryptic sites—consisting of transient pockets coupled to the active site—even in a single protein. Based on these observations, we propose that cryptic allosteric sites may be even more ubiquitous than previously thought and that our methods should be a valuable means of guiding the search for such sites.

Page Thumbnails

  • Thumbnail: Page 
[11681]
    [11681]
  • Thumbnail: Page 
11682
    11682
  • Thumbnail: Page 
11683
    11683
  • Thumbnail: Page 
11684
    11684
  • Thumbnail: Page 
11685
    11685
  • Thumbnail: Page 
11686
    11686