Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Influenza virus binds its host cell using multiple dynamic interactions

Christian Sieben, Christian Kappel, Rong Zhu, Anna Wozniak, Christian Rankl, Peter Hinterdorfer, Helmut Grubmüller and Andreas Herrmann
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 34 (August 21, 2012), pp. 13626-13631
Stable URL: http://www.jstor.org/stable/41700982
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Influenza virus binds its host cell using multiple dynamic interactions
Preview not available

Abstract

Influenza virus belongs to a wide range of enveloped viruses. The major spike protein hemagglutinin binds sialic acid residues of glycoproteins and glycolipids with dissociation constants in the millimolar range [Sauter NK, et al. (1992) Biochemistry 31:9609-9621], indicating a multivalent binding mode. Here, we characterized the attachment of influenza virus to host cell receptors using three independent approaches. Optical tweezers and atomic force microscopy-based single-molecule force spectroscopy revealed very low interaction forces. Further, the observation of sequential unbinding events strongly suggests a multivalent binding mode between virus and cell membrane. Molecular dynamics simulations reveal a variety of unbinding pathways that indicate a highly dynamic interaction between HA and its receptor, allowing rationalization of influenza virus-cell binding quantitatively at the molecular level.

Page Thumbnails

  • Thumbnail: Page 
[13626]
    [13626]
  • Thumbnail: Page 
13627
    13627
  • Thumbnail: Page 
13628
    13628
  • Thumbnail: Page 
13629
    13629
  • Thumbnail: Page 
13630
    13630
  • Thumbnail: Page 
13631
    13631