Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Feature Indeterminacy and Feature Resolution

Mary Dalrymple and Ronald M. Kaplan
Language
Vol. 76, No. 4 (Dec., 2000), pp. 759-798
DOI: 10.2307/417199
Stable URL: http://www.jstor.org/stable/417199
Page Count: 40
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Feature Indeterminacy and Feature Resolution
Preview not available

Abstract

Syntactic features like CASE, PERSON, and GENDER are often assumed to have simple atomic values that are checked for consistency by the standard predicate of equality. The CASE feature has values such as NOM or ACC, and values like MASC and FEM are assumed for the feature GENDER. But such a view does not square with some of the complex behavior these features exhibit. It allows no obvious account of FEATURE INDETERMINACY (how a particular form can satisfy conflicting requirements on a feature like CASE), nor does it give an obvious account of FEATURE RESOLUTION (how PERSON and GENDER features of a coordinate noun phrase are determined on the basis of the conjuncts). We present a theory of feature representation and feature checking that solves these two problems, providing a straightforward characterization of feature indeterminacy and feature resolution while sticking to structures and standard interpretations that have independent motivation. Our theory of features is formulated within the LFG framework, but we believe that similar solutions can be developed within other syntactic approaches.

Page Thumbnails

  • Thumbnail: Page 
759
    759
  • Thumbnail: Page 
760
    760
  • Thumbnail: Page 
761
    761
  • Thumbnail: Page 
762
    762
  • Thumbnail: Page 
763
    763
  • Thumbnail: Page 
764
    764
  • Thumbnail: Page 
765
    765
  • Thumbnail: Page 
766
    766
  • Thumbnail: Page 
767
    767
  • Thumbnail: Page 
768
    768
  • Thumbnail: Page 
769
    769
  • Thumbnail: Page 
770
    770
  • Thumbnail: Page 
771
    771
  • Thumbnail: Page 
772
    772
  • Thumbnail: Page 
773
    773
  • Thumbnail: Page 
774
    774
  • Thumbnail: Page 
775
    775
  • Thumbnail: Page 
776
    776
  • Thumbnail: Page 
777
    777
  • Thumbnail: Page 
778
    778
  • Thumbnail: Page 
779
    779
  • Thumbnail: Page 
780
    780
  • Thumbnail: Page 
781
    781
  • Thumbnail: Page 
782
    782
  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798