Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots

Jesse L. Silverberg, Roslyn D. Noar, Michael S. Packer, Maria J. Harrison, Christopher L. Henley, Itai Cohen and Sharon J. Gerbode
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 42 (October 16, 2012), pp. 16794-16799
Stable URL: http://www.jstor.org/stable/41763440
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots
Preview not available

Abstract

We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that the size of the deformation varies with gel stiffness as expected by a mathematical model based on the theory of buckled rods. Moreover, we show that plant-to-plant variations can be accounted for by biomechanically plausible values of the model parameters.

Page Thumbnails

  • Thumbnail: Page 
[16794]
    [16794]
  • Thumbnail: Page 
16795
    16795
  • Thumbnail: Page 
16796
    16796
  • Thumbnail: Page 
16797
    16797
  • Thumbnail: Page 
16798
    16798
  • Thumbnail: Page 
16799
    16799