Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): Tyloses in summer and gels in winter

Qiang Sun, Thomas L. Rost and Mark A. Matthews
American Journal of Botany
Vol. 95, No. 12 (December 2008), pp. 1498-1505
Stable URL: http://www.jstor.org/stable/41923036
Page Count: 8
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): Tyloses in summer and gels in winter
Preview not available

Abstract

Vascular occlusion in xylem conduits is a common response to environmental stresses, and plant species are recognized as primarily tylose-forming or gel-forming. These stresses occur throughout the year, but there is little information on the wound responses throughout the year and in growing and dormant tissues. Wound-induced vascular occlusions were evaluated by type (tylose or gel), temporal progress, and spatial distribution for grape stems pruned in four seasons through an entire year. Tyloses were formed predominantly in summer and gels in winter. Cytohistological analyses indicated that wound-induced gels were pectin-rich. Both gel formation and tylose development were complete within 7 d and 10 mm from the cut regardless of the season of the wounding. Most vessels were affected by wounding, but a higher fraction of vessels developed occlusions in summer and autumn (over 80%) than in winter and spring (about 60%). The study is the first to show a single species is capable of producing primarily either tyloses or gels and that the type of wound-induced occlusion is dependent upon the season in which wounding occurs. Winter conditions limit the wound response to reversible gel formation that may contribute to refilling of embolized vessels in the spring.

Page Thumbnails

  • Thumbnail: Page 
1498
    1498
  • Thumbnail: Page 
1499
    1499
  • Thumbnail: Page 
1500
    1500
  • Thumbnail: Page 
1501
    1501
  • Thumbnail: Page 
1502
    1502
  • Thumbnail: Page 
1503
    1503
  • Thumbnail: Page 
1504
    1504
  • Thumbnail: Page 
1505
    1505