Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology

Alejandro Sarrion-Perdigones, Marta Vazquez-Vilar, Jorge Palací, Bas Castelijns, Javier Forment, Peio Ziarsolo, José Blanca, Antonio Granell and Diego Orzaez
Plant Physiology
Vol. 162, No. 3 (July 2013), pp. 1618-1631
Stable URL: http://www.jstor.org/stable/41943502
Page Count: 14
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology
Preview not available

Abstract

Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an evergrowing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.

Page Thumbnails

  • Thumbnail: Page 
1618
    1618
  • Thumbnail: Page 
1619
    1619
  • Thumbnail: Page 
1620
    1620
  • Thumbnail: Page 
1621
    1621
  • Thumbnail: Page 
1622
    1622
  • Thumbnail: Page 
1623
    1623
  • Thumbnail: Page 
1624
    1624
  • Thumbnail: Page 
1625
    1625
  • Thumbnail: Page 
1626
    1626
  • Thumbnail: Page 
1627
    1627
  • Thumbnail: Page 
1628
    1628
  • Thumbnail: Page 
1629
    1629
  • Thumbnail: Page 
1630
    1630
  • Thumbnail: Page 
1631
    1631