Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Role of Oxygen Fixation in Hydroxyproline Biosynthesis by Etiolated Seedlings

Ernest R. Stout and George J. Fritz
Plant Physiology
Vol. 41, No. 2 (Feb., 1966), pp. 197-202
Stable URL: http://www.jstor.org/stable/4260627
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Role of Oxygen Fixation in Hydroxyproline Biosynthesis by Etiolated Seedlings
Preview not available

Abstract

Etiolated maize and soybean seedlings were grown for several days in atmospheres enriched with O18. Hydroxyproline subsequently isolated from the seedlings by column and thin-layer chromatography was labeled with excess O18, but proline was not. Control experiments in which seedlings were grown in $\text{H}_{2}\text{O}^{18}$ and unlabeled atmospheres demonstrated that neither proline nor hydroxyproline was labeled with excess O18. It was concluded that oxygen fixation is an essential feature of hydroxyproline biosynthesis in these seedlings, and that the hydroxyl oxygen atom in hydroxyproline is derived from molecular oxygen and not from water; similar results have been reported previously for sycamore cell suspensions.

Page Thumbnails

  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202