Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Glyceraldehyde 3-Phosphate Dehydrogenases and Glyoxylate Reductase: II. Far Red Light-Dependent Development of Glyceraldehyde 3-Phosphate Dehydrogenase Isozyme Activities in Sinapis alba Cotyledons

R. Cerff and P. H. Quail
Plant Physiology
Vol. 54, No. 1 (Jul., 1974), pp. 100-104
Stable URL: http://www.jstor.org/stable/4263674
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Glyceraldehyde 3-Phosphate Dehydrogenases and Glyoxylate Reductase: II. Far Red Light-Dependent Development of Glyceraldehyde 3-Phosphate Dehydrogenase Isozyme Activities in Sinapis alba Cotyledons
Preview not available

Abstract

Ammonium sulfate chromatography has been employed to separate glyceraldehyde 3-phosphate dehydrogenases (GPD) of Sinapis alba cotyledons of various developmental stages. Cotyledons of dark-grown seedlings possess one major NAD-specific enzyme designated NAD-GPD I. Irradiation with continuous far red light leads to a strong increase in NADP-GPD activity and to the formation of a second NAD activity designated NAD-GPD II. These two activities occur in a constant ratio during cotyledon development, and they are eluted together in ammonium sulfate chromatography. In a later stage of cotyledon development the light-dependent increase in NAD-GPD II is matched by an equivalent decrease in NAD-GPD I. These data suggest that the chloroplast marker enzyme NADP-GPD (EC 1.2.1.13) also has NAD activity and that the light-dependent formation of this bifunctional enzyme is correlated with activity changes of the NAD-GPD of cytoplasmic glycolysis (EC 1.2.1.12).

Page Thumbnails

  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104