Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Aminooxyacetate Stimulation of Glycolate Formation and Excretion by Chlamydomonas

N. E. Tolbert, Mark Harrison and Nicola Selph
Plant Physiology
Vol. 72, No. 4 (Aug., 1983), pp. 1075-1083
Stable URL: http://www.jstor.org/stable/4268169
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Aminooxyacetate Stimulation of Glycolate Formation and Excretion by Chlamydomonas
Preview not available

Abstract

Aminooxyacetate (1 millimolar) did not inhibit photosynthetic 14CO2 fixation by Chlamydomonas reinhardtii Dangeard, (-) strain (N.90) but greatly stimulated the biosynthesis and excretion of glycolate. Similar results were obtained from cells grown with 5% CO2 or low CO2 (air). After 2 minutes with air-grown cells, [14C]glycolate increased from 0.3% of the total 14C fixed by the control to 11.7% in the presence of aminooxyacetate and after 10 minutes from 3.8% to 41.1%. Ammonium nitrate (0.2 millimolar) in the media blocked the aminooxyacetate stimulation of glycolate excretion. Chromatographic analyses of the labeled products in the cells and supernatant media indicated that aminooxyacetate also completely inhibited the labeling of alanine while some pyruvate accumulated and was excreted. A high percentage (35%) of initial 14CO2 fixation was into C4 acids. Initial products of 14CO2 fixation included phosphate esters as well as malate, aspartate, and glutamate in treated or untreated cells. Lactate was also a major early product of photosynthesis, and its labeling was reduced by aminooxyacetate. Inasmuch as lactate was not excreted, glycolate excretion seemed to be specific. When photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, labeled organic and amino acids but not phosphate esters were lost from the cells. Aminooxyacetate did not inhibit the enzymes associated with glycolate synthesis from ribulose bisphosphate.

Page Thumbnails

  • Thumbnail: Page 
1075
    1075
  • Thumbnail: Page 
1076
    1076
  • Thumbnail: Page 
1077
    1077
  • Thumbnail: Page 
1078
    1078
  • Thumbnail: Page 
1079
    1079
  • Thumbnail: Page 
1080
    1080
  • Thumbnail: Page 
1081
    1081
  • Thumbnail: Page 
1082
    1082
  • Thumbnail: Page 
1083
    1083