Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Glycolate Formation and Excretion by Chlorella pyrenoidosa and Netrium digitus

Lester O. Krampitz and C. E. Yarris
Plant Physiology
Vol. 72, No. 4 (Aug., 1983), pp. 1084-1087
Stable URL: http://www.jstor.org/stable/4268170
Page Count: 4
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Glycolate Formation and Excretion by Chlorella pyrenoidosa and Netrium digitus
Preview not available

Abstract

Conditions are described whereby suspensions of Chlorella pyrenoidosa and Netrium digitus photosynthetically biosynthesize and excrete glycolate continuously in high yields. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate-linked enzymes, increased the excretion of glycolate approximately 4-fold in 1 hour (8 millimolar) and 20-fold in 4 hours (40 millimolar) in the presence of 0.2% CO2 in air. The amount of glycolate excreted in the presence of aminooxyacetate and an atmosphere of 0.2% CO2 in air equaled or exceeded the amount excreted in 0.2% CO2 in O2 minus aminooxyacetate. CO2 and light were required for glycolate excretion. Aminooxyacetate also stimulated photosynthetic glycolate excretion in an atmosphere of 0.2% CO2 in nitrogen or helium, although the stimulation was not as great as when air or O2 was present. The excreted glycolate was converted to H2 and CO2 by the combined action of glycolic oxidase and the formic hydrogenlyase complex found in Escherichia coli in total conversion yields of 80%.

Page Thumbnails

  • Thumbnail: Page 
1084
    1084
  • Thumbnail: Page 
1085
    1085
  • Thumbnail: Page 
1086
    1086
  • Thumbnail: Page 
1087
    1087