Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Auxin and Fusicoccin Enhancement of β-Glucan Synthase in Peas: An Intracellular Enzyme Activity Apparently Modulated by Proton Extrusion

Peter M. Ray
Plant Physiology
Vol. 78, No. 3 (Jul., 1985), pp. 466-472
Stable URL: http://www.jstor.org/stable/4269365
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Auxin and Fusicoccin Enhancement of β-Glucan Synthase in Peas: An Intracellular Enzyme Activity Apparently Modulated by Proton Extrusion
Preview not available

Abstract

Fusicoccin (FC), like indoleacetic acid (IAA), causes Golgi-localized β-1,4-glucan synthase (GS) activity to increase when applied to pea third internode segments whose GS activity has declined after isolation from the plant. This suggests that GS activity is modulated by H+ extrusion; in agreement, vanadate and nigericin inhibit the GS response. The GS response is not due to acidification of the cell wall. Treatment of tissue with heavy water, which in effect raises intracellular pH, mimics the IAA/FC GS response. However, various treatments that tend to raise cytoplasmic pH directly, other than IAA- or FC-induced H+ extrusion, failed to increase GS activity, suggesting that cytoplasmic pH is not the link between H+ extrusion and increased GS activity. Although FC stimulates H+ extrusion more strongly than IAA does, FC enhances GS activity at most only as much as, and often somewhat less than, IAA does. This and other observations indicate that GS enhancement is probably not due to membrane hyperpolarization, stimulated sugar uptake, or changes in ATP level, but leave open the possibility that GS is controlled by H+ transport-driven changes in intracellular concentrations of ions other than H+.

Page Thumbnails

  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469
  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471
  • Thumbnail: Page 
472
    472