Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Immunologically Conserved Phycobilisome-Thylakoid Linker Polypeptide

Barbara A. Zilinskas and Dawn A. Howell
Plant Physiology
Vol. 80, No. 4 (Apr., 1986), pp. 829-833
Stable URL: http://www.jstor.org/stable/4269845
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Immunologically Conserved Phycobilisome-Thylakoid Linker Polypeptide
Preview not available

Abstract

We have isolated phycobilisomes from two classes of red algae, several subdivisions of the cyanobacteria, and the cyanelles of Cyanophora paradoxa. In addition to the major light harvesting biliproteins, these phycobilisomes also contain several other polypeptides, the largest of which ranges from 75 to 120 kilodaltons in the different species surveyed. This protein, previously isolated and characterized from three species, was shown to be the final emitter of excitation energy in phycobilisomes and is also thought to be involved in the attachment of the phycobilisomes to the thylakoid membrane. We have obtained polyclonal antibodies to the 95 kilodalton polypeptide isolated from phycobilisomes of the cyanobacterium, Nostoc sp. This protein shares no common antigenic determinants with either the α or β subunits of allophycocyanin, or any of the other biliproteins, as determined by the sensitive Western immunoblotting technique. However, this antiserum cross-reacts with the highest molecular weight polypeptide of all the rhodophytan and cyanobacterial phycobilisomes tested. That these proteins are immunologically related, but are unrelated to other biliproteins, is reminiscent of previous immunological studies of biliproteins which showed that while the three major spectroscopically distinct classes of biliproteins (phycoerythrin, phycocyanin, and allophycocyanin) shared no common antigenic determinants, there was a strong antigenic determinant to specific biliprotein classes which crossed taxonomic divisions.

Page Thumbnails

  • Thumbnail: Page 
829
    829
  • Thumbnail: Page 
830
    830
  • Thumbnail: Page 
831
    831
  • Thumbnail: Page 
832
    832
  • Thumbnail: Page 
833
    833