Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Different Rates of Metabolism of Two Chloroacetanilide Herbicides in Pioneer 3320 Corn

Keith M. O'Connell, E. Jay Breaux and Robert T. Fraley
Plant Physiology
Vol. 86, No. 2 (Feb., 1988), pp. 359-363
Stable URL: http://www.jstor.org/stable/4271141
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Different Rates of Metabolism of Two Chloroacetanilide Herbicides in Pioneer 3320 Corn
Preview not available

Abstract

The in vivo rates of uptake and detoxification of alachlor and metolachlor were determined using Pioneer corn 3320 seedlings. Equal amounts of the radiolabeled herbicides were applied to etiolated coleoptiles and, at various intervals after treatment, the unabsorbed radioactivity was removed and quantified. Analysis of 80% methanol extracts by reverse phase liquid chromatography showed no significant differences in the rate of uptake of metolachlor and alachlor. However, the rate of glutathione conjugation of alachlor in vivo was two- to threefold greater than the rate for metolachlor at 2 and 4 hours after herbicide application. Since the initial step in detoxification is conjugation of the chloroacetanilide to glutathione, the activities of the enzymes responsible for conjugation, the glutathione-S-transferases (GST) were also analyzed in vitro, using crude extracts and the purified GST enzymes. The specific activities of the extracts were consistent with the results in vivo. Using alachlor as a substrate, the specific activity for glutathione conjugation was almost threefold higher than that for metolachlor. Kinetic analysis of purified GST III indicates that the enzyme has a higher affinity for alachlor $(K_{m}$app = 1.69 millimolar) than for metolachlor $(K_{m}$app = 8.9 millimolar).

Page Thumbnails

  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363