Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Substrate Utilization by Suspension Cultures and Somatic Embryos of Daucus carota L. Measured by 13C NMR

Cor Dijkema, Sacco C. de Vries, Hilbert Booij, Tjeerd J. Schaafsma and Albert van Kammen
Plant Physiology
Vol. 88, No. 4 (Dec., 1988), pp. 1332-1337
Stable URL: http://www.jstor.org/stable/4271756
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Substrate Utilization by Suspension Cultures and Somatic Embryos of Daucus carota L. Measured by 13C NMR
Preview not available

Abstract

The uptake and utilization of sucrose by embryogenic suspension cultures of carrot (Daucus carota L.) growing in the presence of 2,4-D and by somatic embryos derived from these cultures was monitored using 13C nuclear magnetic resonance. The exogeneously supplied sucrose was completely hydrolyzed before cell entry; glucose was taken up preferentially when the cells were cultured in the presence of 2,4-D, while glucose and fructose were utilized at similar rates by somatic embryos in the absence of 2,4-D. Both suspension cells and somatic embryos accumulated high intracellular levels predominantly of glucose and sucrose, the latter being resynthesized intracellularly from the constitutive hexoses. Initially, fructose was converted mainly into glucose and sucrose rather than being catabolized directly through glycolysis or the pentose phosphate pathway. Carbohydrate supply that exceeded cellular demand resulted in intracellular accumulation of mono- or disaccharides. The capacity of cultured carrot cells to produce somatic embryos appeared to be positively correlated with high intracellular levels of glucose.

Page Thumbnails

  • Thumbnail: Page 
1332
    1332
  • Thumbnail: Page 
1333
    1333
  • Thumbnail: Page 
1334
    1334
  • Thumbnail: Page 
1335
    1335
  • Thumbnail: Page 
1336
    1336
  • Thumbnail: Page 
1337
    1337