Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Impairment of Tonoplast H⁺-ATPase as an Initial Physiological Response of Cells to Chilling in Mung Bean (Vigna radiata [L.] Wilczek)

Shizuo Yoshida, Chie Matsuura and Shuichi Etani
Plant Physiology
Vol. 89, No. 2 (Feb., 1989), pp. 634-642
Stable URL: http://www.jstor.org/stable/4271886
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Impairment of Tonoplast H⁺-ATPase as an Initial Physiological Response of Cells to Chilling in Mung Bean (Vigna radiata [L.] Wilczek)
Preview not available

Abstract

Biochemical alterations of cellular membranes in chilling-sensitive mung bean (Vigna radiata [L.] Wilczek) hypocotyls were investigated with reference to chilling injury. Reversible decreases in activities of tonoplast H+-ATPase and in vivo respiration became manifest within 24 hours of chilling when tissues suffered no permanent injury as assessed by electrolyte leakage and regrowth capacity. These changes were found to be the earliest cellular responses to chilling. A density-shift on a sucrose density gradient was observed in Golgi membranes early in the chilling treatment, suggesting that Golgi function and/or membrane biogenesis via the Golgi may have been altered upon chilling. After chilling more than 2 days, irreversible changes were generally produced in cellular membranes including the plasma membrane, endoplasmic reticulum, and mitochondria. Respiratory functions remained intact in mitochondria isolated from tissues prechilled for 24 hours, but were impaired after prechilling for 3 days. Given the important role of the tonoplast H+-ATPase in the active transport of ions and metabolites, the early decline in the tonoplast H+-ATPase activity may give rise to an alteration of the cytoplasmic environment and, consequently, trigger a series of degenerative reactions in the cells.

Page Thumbnails

  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642